Team Amadeus: MAD Assembly Builder Design Review

Members: Wyatt Evans, Kyle Krueger, Melody Pressley, Evan Russell Mentor: Austin Sanders Sponsors: Dr. Hélène Coullon & Frédéric Loulergue

Team Introductions

Wyatt Evans

Kyle Krueger

Team Leader

Release Manager

Melody Pressley

Document Architect

Documenter

Software Deployment

- Deployment of software across multiple devices
- Many interrelated, interconnected activities
- All software is unique
 - Different dependencies, characteristics, specifications
 - Deployment process must be unique

Our Clients

Dr. Frédéric Loulergue

Professor @ School of Informatics Computing and Cyber Systems

Dr. Hélène Coullon

Assistant Professor at IMT Atlantique, Inria researcher

Madeus / MAD

- Madeus
 - Theoretical Model for Software Deployment
 - Explicitly Defined Steps and Dependencies
- MAD
 - Madeus Application Deployer
 - Formal Implementation
 - Python

Fig. 2: Basic Madeus Assembly

The Problem

- Current process is slow
- Designing an assembly in code is tedious
- Complex to edit
- Easier to visualize and modify with diagrams

Our Solution: Develop a GUI

- Visualization
- Simulation
- Easy for user to edit
- Decrease turnaround time on MAD Assembly development

Key Requirements

- Visualize & Simulate Madeus Assemblies
- Generate MAD code that represents the user's diagram
- Extensible Framework that allows for future additions

Top Level Requirements

- Functional
 - Drag-and-Drop method for building Madeus Assemblies
 - Animations & Graphics for Simulation of the Assemblies
 - GUI representation can generate MAD Code
 - Save Assemblies to .yaml files
 - Unobtrusive alert system (deadlocks, incompatible layout, etc.)
 - Plugin Support to allow for forward-thinking extensibility

Top Level Requirements (cont.)

- Performance
 - A basic 2-component Assembly with 3 places in each can be built in less than 30 minutes
 - Simulates the Assembly accurately; within 5 seconds of projected time.
 - Saves an Assembly within 1 minute
- Environmental
 - Generated Code is in Python
 - Cross-Platform: Windows, MacOS, Linux

A Breakdown of Code Generation (Process)

- The user creates an assembly and component(s).
- Component creation simultaneously creates a back-end linked list.
- When the user requests code generation, iterate over the linked list to create each component file.
- After each component file has been created, the driver program will be created based off variables in the component programs(s).
- The user can then run the program if needed.

A Graphical Breakdown of Code Generation

E

3

→ NULL

Е

x

EX

(2) - Interface

2

(1) - GUI Front-End

Overall Requirement Summary

- Code generation
- Real-time animation/simulation in GUI
- Future plug-in support

Risks and Feasibility

- Generated MAD Code may not accurately represent GUI diagram
 - Result in incorrectly deployed software which could lead to infrastructure instability
 - Develop cohesive tests of a simple assembly (MariaDB and Apache)
 - Test edge cases that may also break the back-end MAD code generation
- Software Integrity
 - Ensuring software is extensible with plugins while keeping software integrity
 - Allowing the user to create plugins without altering the code foundation
- Simulation time may be inaccurate
 - Minimize overhead
 - Maximize Performance of the animation

Plan Going Forward

Gantt Chart / Development Schedule

Project Title	Project Title MAD Assembly Builder Team Lead Wyatt Evans		Sponsor Dr. Hélène Coullon DATE 11/20/2018																						
Team Lead																									
								PREWORK			PHAS	E ON	E		P	HAS	ETW	0		PHA:	SE TH	IREE	PHA	SE F	OUR
TASK NUMBER	TASK TITLE	TASK OWNER	START DATE	DUE DATE	DURATION	PCT OF TASK COMPLETE		PREWORK PHA Now WEEK WEE		WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6	WEEK 7	WEEK 8	WEEK 9	WEEK	WEEK	WEEK	WEEK 13	WEEK	WEEK	WEEK 16	
0	Project Initia	ation																							
		TEAM	9/18/18	12/14/18	86	66%	\sim	\sim																	
1	GUI Creation	า																							
		TEAM	12/14/18	2/4/19	50	0%																			
2	Interface / L	inked List																							
		TEAM	2/4/19	3/18/19	44	0%																			
3	Linking GUI	to MAD																							
		TEAM	3/18/19	4/8/19	20	0%																			
4	Testing/Pres	entation																							
		TEAM	4/8/19	5/6/19	28	0%																			

Conclusion

- The Problem
 - MAD software results in good deployment performance but is tedious and complicated to implement
 - Need a way to help visualize software deployments
- Our Solution
 - Develop a Graphical User Interface
 - i. Help Visualize an Assembly of components with dependencies
 - ii. Accurately Simulate Software Deployment via animation
 - iii. Automate the Generation of Madeus Application Deployer Code
- Our Plan Moving Forward
 - Phase 1: GUI Creation

Thank you!

Any questions?