
Team Amadeus: 
MAD Assembly Builder

Design Review

1

Members: 
Wyatt Evans, Kyle Krueger, 

Melody Pressley, Evan Russell
Mentor: 

Austin Sanders
Sponsors: 

Dr. Hélène Coullon & Frédéric Loulergue



Team Introductions
 

Wyatt Evans Kyle Krueger Melody Pressley Evan Russell

Team Leader Release Manager Document Architect Documenter

2



Software Deployment
● Deployment of software across multiple devices
● Many interrelated, interconnected activities
● All software is unique

○ Different dependencies, characteristics, specifications
○ Deployment process must be unique

3
Fig. 1: Software Deployment Example



Our Clients

Dr. Hélène Coullon
Assistant Professor at IMT Atlantique, 

Inria researcher

4

Dr. Frédéric Loulergue
Professor @ School of Informatics 

Computing and Cyber Systems



Madeus / MAD
● Madeus

○ Theoretical Model for Software Deployment
○ Explicitly Defined Steps and Dependencies

● MAD
○ Madeus Application Deployer
○ Formal Implementation
○ Python

5

Fig. 2: Basic Madeus Assembly



The Problem
● Current process is slow
● Designing an assembly in code is tedious
● Complex to edit
● Easier to visualize and modify with diagrams

6



Our Solution: Develop a GUI
● Visualization
● Simulation
● Easy for user to edit
● Decrease turnaround time on MAD Assembly development

7



Key Requirements
● Visualize & Simulate Madeus Assemblies
● Generate MAD code that represents the user’s diagram
● Extensible Framework that allows for future additions

8



Top Level Requirements
● Functional

○ Drag-and-Drop method for building Madeus Assemblies
○ Animations & Graphics for Simulation of the Assemblies
○ GUI representation can generate MAD Code
○ Save Assemblies to .yaml files
○ Unobtrusive alert system (deadlocks, incompatible layout, etc.)
○ Plugin Support to allow for forward-thinking extensibility

9



Top Level Requirements (cont.)
● Performance

○ A basic 2-component Assembly with 3 places in each can be built in less than 30 minutes
○ Simulates the Assembly accurately; within 5 seconds of projected time.
○ Saves an Assembly within 1 minute

● Environmental
○ Generated Code is in Python
○ Cross-Platform: Windows, MacOS, Linux

10



A Breakdown of Code Generation (Process)
● The user creates an assembly and component(s).
● Component creation simultaneously creates a back-end linked list.
● When the user requests code generation, iterate over the linked list to 

create each component file.
● After each component file has been created, the driver program will be 

created based off variables in the component programs(s).
● The user can then run the program if needed.

11



A Graphical Breakdown of Code Generation

12

Madeus Assembly Builder

(2) - Interface

(1) - GUI Front-End

(3) - Generated Code



Overall Requirement Summary

13

● Code generation
● Real-time animation/simulation in GUI
● Future plug-in support



Risks and Feasibility
● Generated MAD Code may not accurately represent GUI diagram

○ Result in incorrectly deployed software which could lead to infrastructure instability
○ Develop cohesive tests of a simple assembly (MariaDB and Apache)
○ Test edge cases that may also break the back-end MAD code generation

● Software Integrity 
○ Ensuring software is extensible with plugins while keeping software integrity
○ Allowing the user to create plugins without altering the code foundation

● Simulation time may be inaccurate
○ Minimize overhead
○ Maximize Performance of the animation

14



Plan Going Forward

15

Gantt Chart / Development Schedule 



Conclusion
● The Problem

○ MAD software results in good deployment performance but is tedious and complicated to 
implement

○ Need a way to help visualize software deployments

● Our Solution
○ Develop a Graphical User Interface

i. Help Visualize an Assembly of components with dependencies
ii. Accurately Simulate Software Deployment via animation
iii. Automate the Generation of Madeus Application Deployer Code

● Our Plan Moving Forward 
○ Phase 1: GUI Creation

16



Thank you!

Any questions?

17


